Package: spectral 2.0

spectral: Common Methods of Spectral Data Analysis

On discrete data spectral analysis is performed by Fourier and Hilbert transforms as well as with model based analysis called Lomb-Scargle method. Fragmented and irregularly spaced data can be processed in almost all methods. Both, FFT as well as LOMB methods take multivariate data and return standardized PSD. For didactic reasons an analytical approach for deconvolution of noise spectra and sampling function is provided. A user friendly interface helps to interpret the results.

Authors:Martin Seilmayer

spectral_2.0.tar.gz
spectral_2.0.zip(r-4.5)spectral_2.0.zip(r-4.4)spectral_2.0.zip(r-4.3)
spectral_2.0.tgz(r-4.5-any)spectral_2.0.tgz(r-4.4-any)spectral_2.0.tgz(r-4.3-any)
spectral_2.0.tar.gz(r-4.5-noble)spectral_2.0.tar.gz(r-4.4-noble)
spectral_2.0.tgz(r-4.4-emscripten)spectral_2.0.tgz(r-4.3-emscripten)
spectral.pdf |spectral.html
spectral/json (API)
NEWS

# Install 'spectral' in R:
install.packages('spectral', repos = c('https://seil85.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.81 score 1 packages 36 scripts 385 downloads 6 mentions 16 exports 5 dependencies

Last updated 4 years agofrom:b1219fce37. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 15 2025
R-4.5-winOKMar 15 2025
R-4.5-macOKMar 15 2025
R-4.5-linuxOKMar 15 2025
R-4.4-winOKMar 15 2025
R-4.4-macOKMar 15 2025
R-4.4-linuxOKMar 15 2025
R-4.3-winOKMar 15 2025
R-4.3-macOKMar 15 2025

Exports:amaxanalyticFunctionBPdeconvolveenvelopefilter.fftfilter.lombHinterpolate.fftspec.fftspec.lombwaterfallwin.coswin.hannwin.nuttwin.tukey

Dependencies:latticepbapplyplotrixrasterImageRhpcBLASctl